
A Self-Play Policy Optimization Approach to
Battling Pokémon

Dan Huang
San Francisco, CA, United States

hello@yuzeh.com

Scott Lee
Irvine, CA, United States

randomperson2727@gmail.com

Abstract—Pokémon is a popular role-playing video game
franchise with a long-lived competitive scene that has evolved
throughout the last two decades. The game exhibits several
properties that come together to present a worthy challenge for
AI agents to tackle. In this work, we present a low-cost self-
play based reinforcement learning approach to the competitive
battling aspect of the game. The proposed agent was tested and
trained in a variety of environments designed to simulate possible
use cases of such an AI. Experiments demonstrate that the agent
is capable of performing on par with the state of the art in
search-based Pokémon AI, as well as being competitive with
human players on a popular matchmaking ladder. Furthermore,
we investigate the transferability of trained skill–whether an
agent trained in one environment performs well in a different
environment.

I. INTRODUCTION

In game-playing AI, there are several known challenges that
that make both design and implementation of agents difficult.
For example, some techniques, like minimax search, often
require a means of simulating the impact of a decision on
a game state. The simulation itself can be computationally ex-
pensive, and implementation is a non-trivial task, particularly
for complex, partially observable, and stochastic games. On
the other hand, techniques that rely on data must consider the
validity of their data, representation of a complex state, and the
cost of training. To further compound these challenges, updates
to modern games will often materially change their dynamics.
Whenever a new expansion upends a game’s mechanics, one
has to revisit their simulator or recollect data, which can be a
pain point for developers and researchers.

In this work, we present a self-play based reinforcement
learning (RL) approach to battling in Pokémon, a turn based
adversarial game. Our approach does not require the imple-
mentation of a simulator, is low-cost to train, and performs
well in a game that heavily features nondeterminism, partial
observability, and a high cardinality game state with predomi-
nantly categorical features. This work discusses the algorithm,
training methodology, results against a state-of-the-art search-
based agent, as well as performance against human players “in
the wild”. We aim to show that this technique can perform well
in a variety of environments, as well as investigate the ability
of an agent trained on one format to perform in another.

II. BACKGROUND

Pokémon is a popular video game franchise featuring a
combat system around which a competitive scene has de-
veloped. Battles are turn-based adversarial games in which
players construct teams of six Pokémon each and aim to
defeat their opponent’s Pokémon before they themselves are
defeated. Over the course of seven major iterations, the game’s
ruleset and competitive metagame have changed drastically,
with the game mechanics changing after each iteration. As
an AI benchmark, modern Pokémon has several properties
that make it challenging [1]. Game states in Pokémon are
high-dimensional and the majority of its features are both
categorical and partially observable. Player decisions are also
processed atomically, and individual moves tend to have large
impacts on game state. As a result, a game state can change
drastically and unpredictably between steps. The game also
features teambuilding on a scale that is several orders of
magnitude more complex than many MOBAs, like Dota.

Several members of the competitive Pokémon community
have developed agents to tackle this problem. The methodolo-
gies comprising the current state of the art consist primarily of
search-based and heuristic-based systems, with limited forays
into machine learning [2] [3] [4]. We believe the RL approach
presented here is novel to the space and provides a different
avenue of AI development for Pokémon battles that manages
to deal well with several of the challenges that the game
presents.

III. METHODOLOGY

We treat a Pokémon battle as a POMDP1, where actions
correspond to phases in the battle where the player is required
to make a decision. Examples of actions include “switch to the
Pokémon in slot 3” or “use move 2 on the active Pokémon.”
For the rest of this work, we let n denote the cardinality of
the action space of the POMDP.

Inspired by self-play systems OpenAI’s Dota AI [5], we
represent our agent using an actor-critic neural network. Actor-
critic RL methods [6] combine policy-based and value-based
RL methods by predicting both policy and value for a given
state, and then using the value prediction (the “critic”) as

1While formalisms such as the extensive-form game more accurately
describe gameplay in multi-player games, treating the game as a POMDP
allows us to use methods that have been developed by the deep reinforcement
learning community in recent years.

978-1-7281-1884-0/19/$31.00 ©2019 IEEE

Feature Type Dims Description

species categorical 1× 1023 e.g. Pikachu
item categorical 1× 368 e.g. Leftovers, Choice Band
ability categorical 1× 238 e.g. Rough Skin, Shadow Tag
moveset categorical 4× 731 e.g. Flamethrower, Surf
lastmove categorical 1× 731 The latest move used
stats continuous 6 HP, Atk, Def, SpA, SpD, Spe
boosts continuous 6 Temporary boosts for stats
hp continuous 1 Current number of hitpoints
maxhp continuous 1 Number of HP at full health
ppUsed continuous 4 # times a move was used
active indicator 1 1 if Pokémon is active, else 0
fainted indicator 1 1 if Pokémon has no HP, else 0
status indicator 28 e.g. sleep, burn, paralysis
types indicator 18 e.g. Bug, Fire
volatiles indicator 23 e.g. Leech Seed, Perish Song

TABLE I: An incomplete list of features used to describe a single
Pokémon in a battle. These features are fed as part of the input to
our Pokémon battling agent.

an estimate of expected return when updating the policy
prediction (the “actor”). In our case, both actor and critic are
represented by a two-headed neural network fθ (parameterized
by θ). Neural network training proceeds via self-play RL.

A. Neural network

The input to the neural network is the current state of the
game, from the point of view of the player. This is a complex
multi-level tree-like structure:

1) The battle consists of two teams, along with weather
effects.

2) Each team consists of six Pokémon, along with side
conditions (e.g. entry hazards, Reflect).

3) Each Pokémon has many features. Table I contains a
partial list.

The network has two outputs: 1) a probability distribution
π ∈ Rn over actions to take, and 2) an estimate of player
strength in the current state v ∈ R. To compute π:

1) The network outputs an intermediate vector p ∈ Rn.
Each of the colored cells in Figure 1 correspond to an
element of p.

2) We obtain a probability distribution π′ ∈ Rn by using
the softmax function: π′i =

exp pi∑n
j=1 exp pj

.
3) Because not every action is valid in every state (for

example, a switch to a Pokémon is invalid if that
Pokémon is already fainted), we need to make sure our
agent has zero probability of taking invalid actions. To
do this, we take a mask s ∈ {0, 1}n as part of the input,
and renormalize probabilities to obtain π: πi =

siπ
′
i

sTπ′ .
Two key design decisions are worth mentioning here. First,

we use 128-dimensional entity embedding layers for each of
the categorical variables. This enables us to capture similarities
between different moves, species, items, and abilities without
having to directly model their (often complicated) effects.
Second, the parameters for computing p from above are shared
among all n actions.

The network is described by Figure 1 and contains
1,327,618 parameters in total.

B. Training

Algorithm 1: The self-play neural network training loop
for our Pokémon battling agent.
initialize θ0 with random values
i← 0
while true do

simulate m self-play matches using fθi as both
players. Sample from π to select the action to take
at each turn.

update the neural network parameters using the 2m
self-play matches as training data to obtain new
neural network parameters θi+1.
i← i+ 1

end

Training for our agent proceeds serially as described in
Algorithm 1. We assign a reward of +1 for a win and −1 for a
loss at the end of a match. To speed up learning, we construct
a dense reward signal using reward shaping. Auxiliary rewards
are assigned based on events that occur over the course of the
match. For example, we add a reward of −0.0125 when a
Pokémon on the player’s side faints, and a reward of +0.0025
whenever the player’s Pokémon makes a super effective move.

To update the neural network, we use Proximal Policy
Optimization [7], which optimizes an objective function that
combines expected reward, accuracy of state-value prediction,
and a bonus for high entropy policies. To reduce the variance
of policy gradient estimates, we use Generalized Advantage
Estimation [8].

In our experiments, training proceeded for 500 iterations of
the loop (so our end parameters are θ500). For the number
of matches played per iteration, we picked m = 7680 (a
completely arbitrary choice). At the end of training, 3,840,000
self-play matches had been played by the neural network.

The cost of training was relatively low; the agent was trained
using Google Cloud Platform over the course of 6 days and
cost approximately $91 USD.

IV. FORMAT 1: RANDOM BATTLING

The agent was trained on Pokémon Showdown’s
gen7randombattle format, in which both players
are given randomly2 generated teams to use. This format is
useful as it provides wide coverage on the teams the agent
may encounter or be made to use.

A. Performance Against Other Agents

After training, the agent was evaluated against a set of
agents of varying complexity:
• random - The agent selects a random move each turn.

2For each Pokémon, moves are randomly drawn from a pool that contains
4 to 14 moves, depending on the Pokémon. This is not uniformly random and
is done to ensure a good gameplay experience.

Player Team

Pokémon 1 (Active)

Ability
EmbeddingPossible Ability 1 Ability

EmbeddingPossible Ability 1 Ability
EmbeddingPossible Ability 1

Ability
EmbeddingAbility Name

Item
EmbeddingItem Name

Species
EmbeddingSpecies Name

Move
EmbeddingMove 1 Move

EmbeddingMove 1 Move
EmbeddingMove Name 1 Average

Average

Move
EmbeddingLast Move Name

Concat

Item
EmbeddingLast Item Name

Concat

HP Stats

Status

Volatiles

Types Move PP

Is ActiveIs Fainted

Boosts

FC-ReLU

Max Pool FC-ReLU

ConcatActive Pokémon

Team Conditions

Opponent Team

Pokémon 1 (Active)

Ability
EmbeddingPossible Ability 1 Ability

EmbeddingPossible Ability 1 Ability
EmbeddingPossible Ability 1

Ability
EmbeddingAbility Name

Item
EmbeddingItem Name

Species
EmbeddingSpecies Name

Move
EmbeddingMove 1 Move

EmbeddingMove 1 Move
EmbeddingMove Name 1 Average

Average

Move
EmbeddingLast Move Name

Concat

Item
EmbeddingLast Item Name

Concat

HP Stats

Status

Volatiles

Types Move PP

Is ActiveIs Fainted

Boosts

FC-ReLU

Max Pool FC-ReLU

Concat
Active Pokémon

Team Conditions

Global State
Weather Type

Weather Time Left

Weather Min Time Left

Concat

FC-ReLU

FC-ReLU

FC-ReLU Value

Switch to 6

Switch to 5

Switch to 4

Switch to 3

Switch to 2

Switch to 1

Move 1

Move 2

Move 3

Move 4

Concat

Concat

Concat

Concat

Concat

Concat

Concat

Concat

Concat

Concat

Policy

Mask

Softmax

Player Active Move 4 Embedding

Player Active Move 3 Embedding

Player Active Move 2 Embedding

Player Active Move 1 Embedding

Fig. 1: The actor-critic neural network architecture describing our Pokémon battling agent. Input is the game state at a given
turn. Outputs are 1) a probability distribution over actions to take (denoted “Policy”) and 2) an estimate of the strength of the
agent’s position in the current state (denoted “Value”). Best viewed on a computer.

Opponent Wins Losses
random 995 5
most-damage 929 71
most-damage-typed 829 171
pmariglia 612 388

TABLE II: The performance of RL-rb against a set of
opponents in gen7randombattle.

• most-damage - The agent selects the highest damage
move each turn. This aligns with beginner level play.

• most-damage-typed - Similar to most-damage,
except that the agent has knowledge of Pokémon type
weaknesses and resistances.

• pmariglia [3] - An open-source tree-search agent with
a bespoke heuristic-based state evaluator.

The random nature of team selection in this format means
that matches can be unbalanced before play begins; outcomes
in matches are influenced by the quality of the teams as well
as the quality of the agents. To reduce the variance in our
estimates of comparative skill, we simulate many matches
between pairs of competitors.

We play 1000 gen7randombattle matches between
RL-rb and each of the other agents. Table II shows the results.
RL-rb outperforms the simple heuristic based ones, while

pmariglia offers a usable baseline against which we can
evaluate subsequent experiments.

B. Performance Against Human Players

We sought to determine whether RL-rb was compet-
itive against humans. Every 100 training iterations, we
would evaluate it by having it play 300 matches on the
gen7randombattle ladder on the Pokémon Showdown
server3, and used its Glicko-1 [9] rating4 at the end of
matchmaking as an indicator of skill. At the end of 500
training iterations, RL-rb attains a 1677 Glicko-1 rating,
which roughly corresponds to a 72% chance of defeating an
opponent selected uniformly at random from the ladder.

V. FORMAT 2: ESTABLISHED METAGAME

A. Experiment Structure

Communities surrounding competitive games with strong
teambuilding (or deckbuilding) elements tend to converge on
a set of teams (or decks) that are commonly used among
the population of players. This is often referred to as the
metagame. Teams in a metagame tend to exhibit complexity
in strategy; successful use of a complex team requires the

3https://play.pokemonshowdown.com/
4Pokémon Showdown exposes an Elo rating for competitors, but we do

not use that because their Elo rating is not a true Elo system. [10] contains a
discussion of rating systems for Pokémon Showdown servers.

https://play.pokemonshowdown.com/

pmariglia Team
OF PS TR

RL-rb Team
OF 0.435 0.21 0.87
PS 0.82 0.24 0.8
TR 0.145 0.12 0.635

TABLE III: The performance of RL-rb against against
pmariglia in 3team. Each value represents the win rate
of RL-rb after 200 matches.

pmariglia Team
OF PS TR

RL-meta Team
OF 0.73 0.555 0.99
PS 0.975 0.895 0.97
TR 0.81 0.67 0.96

TABLE IV: The performance of RL-meta against against
pmariglia in 3team. Each value represents the win rate
of RL-meta after 200 matches.

execution of multi-step action sequences. To simulate this
environment and investigate RL-rb’s ability to execute more
complex strategies, we designed three teams of varying levels
of complexity. The three teams are:

• Offense (OF) - A minimally complex team consisting of
6 offensively strong Pokémon.

• Psyspam (PS) - A more complex team that is currently
very popular in the Pokémon metagame. The team re-
volves around Tapu Lele, a Pokémon notable for its
ability to create a favorable game state by controlling
terrain.

• Trick Room (TR) - A complex niche team made up of
Pokémon that revolves around the use of Trick Room.

We call the resulting three-team metagame 3team.

B. Results

1) RL-rb: Table III shows the results of playing RL-rb
against pmariglia in 3team. As can be seen, RL-rb
performs somewhat poorly against pmariglia. Empirically
inspecting a sample of replays from this experiment indicates
that many of the agent’s losses can be attributed either to
an inability to properly utilize the team’s core strategy or an
unfavorable edge case to a conventional strategy.

2) RL-meta: A follow-up experiment was performed to
investigate whether an agent repeatedly exposed to the three
teams would perform better in 3team. We took the neural
network for RL-rb, and trained for another 50 iterations.
For each of the 50 × 7680 = 384, 000 matches played, both
players’ teams were selected at random from our set of three:
{OF,PS,TR}. We call the resulting agent RL-meta.

Table IV shows RL-meta’s win rates. As can be seen,
the specialized agent’s win rates are significantly higher than
those of the generalized agent, and outperforms pmariglia
in each matchup.

C. Can RL-meta effectively play gen7randombattle?

In a head-to-head matchup of RL-rb and RL-meta in
the generalized format (gen7randombattle), RL-meta
only wins 77/500 matches. The specialized agent exhibited
poor performance in gen7randombattle, likely because
the strategies required to use the 3team teams are effectively
inapplicable for the vast majority of team configurations.

VI. DISCUSSION AND FUTURE WORK

The results generally indicate that the agent can be trained
to perform well in multiple environments, with the caveat that
the agent must be retrained for each. This is a minor issue,
as training the agent is inexpensive and can be bootstrapped
using a previously trained model as a baseline. The low cost
and overhead of training will also be helpful when the game
undergoes significant changes upon the release of the next
generation of games.

The agent also opens up several potential avenues for
future work. Further improvements to the agent may possi-
bly achieved through different network architectures or the
addition of a recurrent element like an LSTM to better model
human memory during the course of a game. It would be
similarly interesting to investigate more expansive simulacra of
the competitive metagame, with future experiments evaluating
the agent’s play using “metagame” teams against human
players.

Additionally, there is other work to be done with Pokémon.
RL-rb has been shown to be capable of using a wide variety
of teams, and may provide a helpful tool in procedurally
generating teams. The difference in performance between
RL-rb and RL-meta surface the implication that the two
formats are different enough that they require wholly different
strategies. This training and evaluation approach could be
useful in investigating the design and difficulty of different
play environments.

REFERENCES

[1] S. Lee and J. Togelius, “Showdown ai competition,” in 2017 IEEE
Conference on Computational Intelligence and Games (CIG). IEEE,
2017, pp. 191–198.

[2] vasumv, “vasumv/pokemon ai,” Apr 2016, accessed: 2019-05-13.
[Online]. Available: https://github.com/vasumv/pokemon ai

[3] pmariglia, “pmariglia/showdown,” Apr 2019, accessed: 2019-05-13.
[Online]. Available: https://github.com/pmariglia/showdown

[4] D. Stone, “Technical machine,” http://doublewise.net/pokemon/, ac-
cessed: 2019-05-13.

[5] OpenAI, “Openai five,” https://blog.openai.com/openai-five/.
[6] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances

in neural information processing systems, 2000, pp. 1008–1014.
[7] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,

“Proximal policy optimization algorithms,” CoRR, vol. abs/1707.06347,
2017. [Online]. Available: http://arxiv.org/abs/1707.06347

[8] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
in Proceedings of the International Conference on Learning Represen-
tations (ICLR), 2016.

[9] M. E. Glickman, “The glicko system,” Boston University, 1995.
[10] Antar, “Resource - everything you ever wanted to know about ratings,”

Aug 2013. [Online]. Available: https://www.smogon.com/forums/
threads/everything-you-ever-wanted-to-know-about-ratings.3487422/

https://github.com/vasumv/pokemon_ai
https://github.com/pmariglia/showdown
http://doublewise.net/pokemon/
https://blog.openai.com/openai-five/
http://arxiv.org/abs/1707.06347
https://www.smogon.com/forums/threads/everything-you-ever-wanted-to-know-about-ratings.3487422/
https://www.smogon.com/forums/threads/everything-you-ever-wanted-to-know-about-ratings.3487422/

	Introduction
	Background
	Methodology
	Neural network
	Training

	Format 1: Random Battling
	Performance Against Other Agents
	Performance Against Human Players

	Format 2: Established Metagame
	Experiment Structure
	Results
	RL-rb
	RL-meta

	Can RL-meta effectively play gen7randombattle?

	Discussion and Future Work
	References

